
Iterated Inhomogeneous Polynomials

Jiaxin Guan? and Mark Zhandry??

Princeton University & NTT Research, USA

Abstract. Let p be a polynomial mod N , and let p(i)(x) be the result
of iterating the polynomial i times, starting at x. In the case where
p(x) = x2 and N is the product of two large primes, p(i) both has a
natural group structure, and also appears hard to compute in time less
than i. This gives rise to interesting cryptographic applications such as
time-lock puzzles and verifiable delay functions.

In this work, we consider p(x) = 2x2 + 3x + 1 and N = 2n. Our ini-
tial hope was that certain features of this polynomial could be likewise
used to build interesting cryptographic applications. To the contrary, and
perhaps surprisingly, we show that p(i)(x) can be computed in time loga-
rithmic in i. Moreover, we show that the discrete log problem—finding i
given x and p(i)(x)—can also be computed efficiently. We conclude with
some interesting future directions to explore.

1 Introduction

Polynomials are ubiquitous throughout cryptography, from public key encryp-
tion such as RSA [RSA78] to secret sharing [Sha79] to multiparty computa-
tion [Yao86, GMW87, BGW88, CCD88]. At the same time, iteration is also
ubiquitous in cryptography, from block cipher designs to memory-hard func-
tions [Per09, AS15] such as Scrypt [Per09] to proofs of sequential work [MMV13,
CP18, AKK+19, DLM19]. Time-lock puzzles [RSW96] and verifiable delay func-
tions (VDFs) [BBBF18, Wes19, Pie19] even combine both, iterating the homo-
geneous polynomial x2. We can also view discrete exponentiation as iterating
the polynomial x2, leading to public key encryption.

In this work, we explore iterating inhomogeneous polynomials. Namely, let
p be a polynomial mod N for some integer n, and let p(0)(x) = x, p(i)(x) =
p(p(i−1)(x)) be the result of iterating p for i times to x.

Wishlist. For the iterative application of a polynomial to be useful for cryptog-
raphy, we may wish for some of the following features:

1. p(i)(x) should have a very large period in i, so that p(i)(x) 6= x for small i.
2. For applications like VDFs, we would like p(i)(x) to be hard to “shortcut”;

that is, it should take time roughly i to compute p(i)(x).

? jiaxin@guan.io
?? mzhandry@cs.princeton.edu

3. If we want post-quantum security, the polynomial p should not correspond
to squaring in a natural group law, since iterated squaring in a group can
be shortcutted. This requires knowing the group order, which can be easily
computed post-quantumly [Sho94].

4. At the same time, group-based VDFs exploit the group structure for verifi-
cation. So in the absence of a group structure, we would like some algebraic
structure that can be used to efficiently verify.

5. Finally, if it is possible to shortcut p(i)(x), then we may try to actually get
useful cryptography from this shortcutting. For example, we could consider
the following Diffie-Hellman-like protocol, where Alice and Bob choose ran-
dom i, j, respectively, and broadcast a = p(i)(0), b = p(j)(0). Then they
compute the shared secret key as K = p(i+j)(0) = p(i)(b) = p(j)(a). More
generally, if we can shortcut p(i), we may hope that we achieve a group
action, with i acting on x [Cou06, RS06]. In this case, we want discrete
logarithms to be hard: given x, p(i)(x), it should be hard to compute i.
Note that group actions are interesting, since unlike groups, group actions
obtain plausible post-quantum security.

Our Setting. We start with the following observation:

Theorem 1. 2x2 + 3x + 1 is a permutation on Z2n , and this permutation is a
cycle of length 2n.

Thus, setting p(x) = 2x2 + 3x + 1 and N = 2n, we satisfy Wishlist Item 1.
We also show that p(x) does not correspond to squaring in any natural group,
satisfying Wishlist Item 3. Since p does not correspond to a group law, that the
order of p is known does not immediately invalidate post-quantum security.

Our initial hope, based on these observations, were that shortcutting (Wish-
list Item 2) is hard, while there is still some structure to exploit for applications
(Wishlist Item 4). Or alternatively, we hoped at least that discrete logarithms
were hard (Wishlist Item 5).

2 Fail 1: Efficient Short-cutting

Unfortunately, we show how to shortcut the computation of p(i), computing it
in time poly(n), ruling out Wishlist Item 2:

Theorem 2. There exists a deterministic algorithm running in time polynomial
in n, which computes p(i)(x) for any i, x ∈ Z2n .

Note that by Theorem 1, we only need to consider i in Z2n , since any two i’s
differing by a multiple of 2n give the same result.

To prove the theorem, we define the set Qn of polynomials q over Z2n of the
following form: q(x) = a0 + a1x + 2a2x

2 + 4a3x
3 + · · ·+ aj2

j−1xj +
We then make two observations: first, all aj for j > n can be taken to

be 0, since those terms will have been multiplied by a factor of 2n 1. Second,

1 With a little more care, we can also eliminate all aj for j & n/2.

2

composing two polynomials in Qn gives another polynomial in Qn. Hence, Qn

forms a ring under polynomial addition and composition.
Importantly, the above means that p(i) ∈ Qn, and can be represented as a

polynomial of degree at most n. Moreover, we can write p(i)(x) = p(i−1)(p(x)),
which allows us to write the coefficients for p(i) as linear combinations of the
coefficients of p(i−1). Computing p(i) then becomes equivalent to taking a matrix
power M i, where M is the matrix corresponding to the linear combinations. We
can then compute p(i)(x) by simply evaluating the polynomial.

With Wishlist Item 2 ruled out, we can at least hope for discrete loga-
rithms (Wishlist Item 5) to be hard, giving rise to plausible post-quantum Diffie-
Hellman protocols.

3 Fail 2: Efficient Discrete Logs

Unfortunately, discrete logarithms can actually be efficiently computed:

Theorem 3. There exists a randomized algorithm running in time polynomial
in n, which computes i given x, y = p(i)(x) ∈ Z2n .

The proof of this theorem proceeds in three steps. The first step is to evaluate
the polynomial p(i) (which at this point is unknown) on several random points.
The second step is to do polynomial interpolation2 on these points to recover
p(i). Once we know p(i), we compute i as the discrete log of p(i) in the group (not
group action!) of polynomials generated by p (which is easy since this group has
a smooth order).

The main non-obvious part is evaluating p(i) at several random points. We
choose several random j ∈ Z2n , and compute cj = p(j)(x) , dj = p(j)(y). Then
each cj will be uniformly random (since p forms a full-length cycle), and

dj = p(j)(p(i)(x)) = p(i+j)(x) = p(i)(p(j)(x)) = p(i)(cj).

4 Potential Next Steps

While we were able to “break” the polynomial p(i) by both short-cutting and
solving discrete logs, we believe we have uncovered an interesting structure with
the ring Qn. Some concrete speculative directions to explore include:

– We can characterize the group of units Q∗
n in Qn as those where the linear

coefficient is odd. Q∗
n is non-abelian. Can we securely plug this group into

proposals for non-abelian cryptosystems?
– Cryptography has a long history of turning cryptographic attacks on their

heads in order to build interesting new cryptosystems. For example, pair-
ings were first used to break cryptosystems [MVO91], but were then turned
around into novel protocols [Jou04, BF01]. Can the ability of computing
discrete logarithms in Qn be used to design interesting novel protocols?

2 This is slightly non-trivial since we are not working over a field, but is nevertheless
possible [MPT16].

3

– Fix a polynomial p ∈ Q∗
n, and consider the conjugation by p: Cp(q) = p ◦

q ◦ p−1. We can write this action on q as a set of polynomial equations on
the coefficients of q. Note that given p, it is trivial to invert Cp; but perhaps
just given the polynomial equations for Cp, inversion is difficult? If so, this
could give a trapdoor permutation on Qn. Interestingly, this permutation is
fully-homomorphic.

References

[AKK+19] Hamza Abusalah, Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and
Michael Walter. Reversible proofs of sequential work. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of
LNCS, pages 277–291. Springer, Heidelberg, May 2019.

[AS15] Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and
memory-hard functions. In Rocco A. Servedio and Ronitt Rubinfeld, editors,
47th ACM STOC, pages 595–603. ACM Press, June 2015.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable
delay functions. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 757–788. Springer,
Heidelberg, August 2018.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
Weil pairing. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 213–229. Springer, Heidelberg, August 2001.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In 20th ACM STOC, pages 1–10. ACM Press, May 1988.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncondi-
tionally secure protocols (extended abstract). In 20th ACM STOC, pages
11–19. ACM Press, May 1988.

[Cou06] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint
Archive, Report 2006/291, 2006. http://eprint.iacr.org/2006/291.

[CP18] Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work.
In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part II, volume 10821 of LNCS, pages 451–467. Springer, Heidelberg,
April / May 2018.

[DLM19] Nico Döttling, Russell W. F. Lai, and Giulio Malavolta. Incremental proofs
of sequential work. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part II, volume 11477 of LNCS, pages 292–323. Springer,
Heidelberg, May 2019.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987.

[Jou04] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. Journal
of Cryptology, 17(4):263–276, September 2004.

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly verifiable
proofs of sequential work. In Robert D. Kleinberg, editor, ITCS 2013, pages
373–388. ACM, January 2013.

4

[MPT16] G. L. Mullen, D. Panario, and D. Thomson. Fast and simple modular
interpolation using factorial representation. The American Mathematical
Monthly, 123(5):471–480, 2016.

[MVO91] Alfred Menezes, Scott A. Vanstone, and Tatsuaki Okamoto. Reducing el-
liptic curve logarithms to logarithms in a finite field. In 23rd ACM STOC,
pages 80–89. ACM Press, May 1991.

[Per09] Colin Percival. Stronger key derivation via sequential memory-hard func-
tions, 2009.

[Pie19] Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum,
editor, ITCS 2019, volume 124, pages 60:1–60:15. LIPIcs, January 2019.

[RS06] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem
Based On Isogenies. Cryptology ePrint Archive, Report 2006/145, 2006.
http://eprint.iacr.org/2006/145.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Communications
of the ACM, 21(2):120–126, 1978.

[RSW96] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and
timed-release crypto. 1996.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124–134. IEEE Computer Society Press,
November 1994.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478
of LNCS, pages 379–407. Springer, Heidelberg, May 2019.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press,
October 1986.

5

