1 Introduction

The Pilsung cipher is part of the North Korean Red
Star operating system, which was leaked to the West in
2014 [1]. The cipher was reverse engineered and ana-
yzed by Kryptos Logic [2], which found that it is based
on AES, albeit it uses key-dependent S-Boxes and per-
mutations. In particular, Kryptos Logic reports that
the ShiftRows operation in Pilsung “can make weak
classes of keys possible, by having permutations that
do not change columns at all.”

To identify and explore this class of weak keys, we an-
alyzed the cipher and got a better understanding of the
ShiftRows permutation in Pilsung. Based on this under-
standing, we designed highly-efficient code for searching
for weak keys. We then used Phoenix, the University of
Adelaide’s compute cluster, spending thousand of CPU
hours to find weak keys. Finally, we tested the keys,
and found that due to our confusion about some details
of the algorithm, all of our efforts were in vain and no
similar class of weak keys exists in Pilsung.

The contributions of this work are:
• We demonstrate how AES-like ciphers that have weak
ShiftRows permutations can be attacked. (Section 3.)
• We develop techniques for efficient search of weak
keys in such vulnerable ciphers. (Section 4.)
• We highlight the benefits of early verification of re-
sults. (Section 5.)

2 Row Your Boat

Pilsung is a block cipher with a substitution permuta-
tion network design, based closely on AES. Specifically,
the Pilsung state is a 4 × 4 matrix, represented either as
a two-dimensional array or as a 16-byte vector. For en-
cryption, the state is initialized with the plaintext and
then it undergoes ten rounds of transformations. Follow-
ing the Kryptos Logic report, we name these steps after their AES counterparts: SubBytes, ShiftRows, Mix-
Columns, and AddRoundKey. These steps are similar
but are not exactly the same as in AES. The most im-
portant difference from our perspective is that instead
of using a fixed permutation in the ShiftRows step, Pil-
sung uses a key-dependent permutation.

To generate the permutation, Pilsung uses the Rao-
Sandelius shuffle [3, 4], which first “randomly” splits
the array into two halves, then recursively shuffles each
half. To shuffle 16 bytes we require four levels of shuffle.
The randomness for the four levels of shuffle used to
generate the permutation in round i is drawn from the
corresponding round key RK_i. The randomness for the
first and second levels shuffle is taken from the first half
of the round key, and the randomness for the third and
fourth levels shuffle is taken from the second half of the
round key.

Although we use 64 bits of randomness for the first
and second (also third and fourth) levels shuffle, we only
get 6^4 = 1296 possible permutations in the first (and
third) level, and 256 options in the second (and fourth)
level. In total we get a total of 6^4 · 256 · 6^4 · 256 ≈ 2^{36.7}
possible permutations. This is much fewer than the
total number of possible permutations 16! ≈ 2^{44}.

3 By the Stream

The Kryptos Logic report notices that replacing the
AES ShiftRows with a random permutation may result
in a class of weak keys that do not change columns.
In this section, we explore the risk and develop distin-
guishers for such keys.

We say that a round preserves a column i if the
ShiftRows permutation moves all of the bytes of col-
Ciphertext (unknown) location. In the MixColumns transformation moves the difference to a new ShiftRows agates throughout the encryption. The first round's shows the two possible ways that this difference prop-

tinates column.

to a single column j. We further say that a key preserves rounds i to j if there exist $c_i, c_{i+1}, \ldots, c_j$ such that for all $i \leq k < j$, Round k preserves column c_k, moving it to column c_{k+1}.

We now observe that we can easily distinguish a key that preserves rounds 2–9. Suppose we encrypt two plaintexts that only differ in one byte. Figure 1 shows the two possible ways that this difference propagates throughout the encryption. The first round’s ShiftRows transformation moves the difference to a new (unknown) location. In the MixColumns the column containing the byte is mixed, resulting in a difference across the whole column. The top half of the figure shows the case that this column is the one that the key preserves. In this case, if the column is the preserved, the difference does not propagate beyond the column, achieving a difference of one column at Round 9. Because Round 10 does not perform the MixColumns transformation, the bytes of the preserved column are permuted, resulting in ciphertexts that differ in at most four bytes. Alternatively, the bottom half of Figure 1 shows the case where the difference is at a column that is not preserved, the difference diffuses across the three non-preserved columns, but does not affect the preserved column.

Either way, after the last round, we get two ciphertexts that have at least four identical bytes. The probability that two random ciphertexts have four identical bytes is

$$2^{-128} \sum_{n=4}^{16} \binom{16}{n} 255^{16-n} \approx 2^{-21.2}$$

Thus such a difference can distinguish between a random permutation and one created by Pilsung with a key that preserves Rounds 2–9.

As Figure 2 shows, we can extend the attack to a key that preserves Rounds 3 to 9. With a probability of 2^{-24}, changing four bytes that all map to a single column in the first round results in a change of a single byte in the second round. If Round 2 shifts the byte to the preserved column, only four bytes of the ciphertext will differ. The probability of selecting four bytes that all go to the same column is one in $\binom{16}{4}/4$. Thus, if we randomly change four bytes, we can expect that approximately one in $2^{24}/4 \approx 2^{32.8}$ will result in 12 unmodified ciphertext bytes.\footnote{The probability of choosing appropriate four bytes will be slightly higher if the Round 2 permutation maps more than one byte of the same column to the target column. However, in this case less than three bytes need to remain unchanged.}

We now explain how to efficiently find a column preserving a key that preserves Rounds 3–9. Moreover, we find that suitable Round 4 keys are not uniformly distributed. We exploit this by applying a simple heuristic to decide how many combinations of the first word of Round 4 to test.

We now explain how to efficiently find a column preserving Round 3 key. As discussed in Section 2, when generating the ShiftRows permutation, the first two levels of the shuffle distribute the state bytes across the quarters, whereas the last two levels only move bytes within each quarter. Thus, for the key to preserve a
column, the first two levels need to spread the bytes of the preserved column across different rows. By observing the first 64 bits of a key, which determine the two first shuffles, we can rule out candidates guaranteed not to preserve the column.

![Algorithm 1: Search for a weak key in Pilsung](image)

Algorithm 1 shows how we search for a key. We first choose the first half of the Round 3 key (Line 3). If the \textit{ShiftRows} operation with this first half can preserve a column, i.e. it places each of the bytes of a column in a different row, we proceed to select a random second half (Line 6) until we find a round key \(RK_3\) that preserves a column. We then randomly choose the first word of the key of Round 4 (Line 8) and proceed to scan for a key that preserves Rounds 3–9.

The structure of the \textit{ShiftRows} permutation allows a further optimization. Instead of calculating the \textit{ShiftRows} permutation, we perform a meet-in-the-middle search. Specifically, for each of the possible 1296·256 permutations in levels 1 and 2 of the shuffle, we record the positions of the bytes of each of the columns it preserves. Similarly, for each of the possible 1296·256 permutations in levels 3 and 4 of the shuffle, we record the positions of the bytes that end up in each of the columns. By matching the positions for the two halves of the shuffle, we can determine whether the source column is preserved and what the destination column is.

The source code for our key search software is available at \texttt{https://github.com/0xADe1A1DE/PilsungKeySearch}.

5 Dream

With an efficient search algorithm, we utilized the Phoenix high-performance cluster at the University of Adelaide to search for a key that preserves rounds 3–9. Because we reuse \(RK_3\) for multiple candidates, the amortized effort for finding a key that preserves Round 3 is negligible, reducing the search space to \(682^8 \approx 2^{56.5}\). Our highly efficient search algorithm can explore roughly \(2^{25}\) keys per core per second. Thus the expected search time is about 100 CPU years, which is above our budget. However, we did spend over 10,000 CPU hours and found multiple keys that preserve rounds 3–8.

To test the keys, we modified Pilsung, reducing it to a 9 rounds cipher. We ran the attack on one of the keys, finding to our utter surprise that the attack \textit{fails}. Other keys produced similar results — the attack does not work. We modified Pilsung to output the \textit{ShiftRows} permutations and found that they do seem to preserve the required columns.

After much head scratching and frustration we found the cause of the failure. The Pilsung code repeatedly shifts between two representations of the internal state. One representation is as a vector of 16 bytes. The other is a square implemented as a two-dimensional array. Unfortunately, the repeated shifts confused us to think that the vector representation uses the \textit{row-first} order, shown in the left part of Figure 3, for storing the state matrix in an array. However, in practice the representation uses the \textit{column-first} order shown in the right part of Figure 3. Consequently, our key search algorithm in Section 4 searches for \textit{ShiftRows} permutations that preserve rows, rather than columns. While the algorithm is efficient, the security impact of preserving rows is rather dubious – the AES \textit{ShiftRows} permutation preserves all rows.

![Figure 3: Matrix Orderings](image)

Further investigation demonstrated that the randomness chosen for the \textit{ShiftRows} permutation ensures that columns are not preserved. Thus, while we do not claim that there is no class of weak keys in Pilsung, we are quite certain that the approach in this paper is unlikely to find one.

In retrospect, we should have verified that the attack
works much earlier. Had we tried a key that preserves one round on a round-reduced Pilsung, we would have identified the error before spending time and CPU resources on a what in hindsight is a clearly wrong direction. Instead we could have invested the CPU resources into a more profitable target. For example, adding the 10,000 hours to a Bitcoin mining pool would have raised an estimated $7.91, or a whopping $1.97 for each of the authors with three cents to spare.

Acknowledgments

This work was supported by an ARC Discovery Early Career Researcher Award number DE200101577; an ARC Discovery Project number DP210102670; The Blavatnik ICRC at Tel-Aviv University; The Phoenix HPC service at the University of Adelaide; and gifts from Google, Intel, and Robert Bosch Foundation.

Eyal Ronen is a member of Checkpoint Institute of Information Security.

References

